Iterative Solvers for the Stochastic Finite Element Method
نویسندگان
چکیده
This paper presents an overview and comparison of iterative solvers for linear stochastic partial differential equations (PDEs). A stochastic Galerkin finite element discretization is applied to transform the PDE into a coupled set of deterministic PDEs. Specialized solvers are required to solve the very high-dimensional systems that result after a finite element discretization of the resulting set. This paper discusses one-level iterative methods, based on matrix splitting techniques; multigrid methods, which apply a coarsening in the spatial dimension; and multilevel methods, which make use of the hierarchical structure of the stochastic discretization. Also Krylov solvers with suitable preconditioning are addressed. A local Fourier analysis provides quantitative convergence properties. The efficiency and robustness of the methods are illustrated on two nontrivial numerical problems. The multigrid solver with block smoother yields the most robust convergence properties, though a cheaper point smoother performs as well in most cases. Multilevel methods based on coarsening the stochastic dimension perform in general poorly due to a large computational cost per iteration. Moderate size problems can be solved very quickly by a Krylov method with a mean-based preconditioner. For larger spatial and stochastic discretizations, however, this approach suffers from its nonoptimal convergence properties.
منابع مشابه
Efficient Solvers for a Linear Stochastic Galerkin Mixed Formulation of Diffusion Problems with Random Data
Abstract. We introduce a stochastic Galerkin mixed formulation of the steady-state diffusion equation and focus on the efficient iterative solution of the saddle-point systems obtained by combining standard finite element discretisations with two distinct types of stochastic basis functions. So-called mean-based preconditioners, based on fast solvers for scalar diffusion problems, are introduce...
متن کاملEfficient Solvers for a Linear Stochastic Galerkin Mixed Formulation of Diffusion Problems with Random
We introduce a stochastic Galerkin mixed formulation of the steady-state diffusion equation and focus on the efficient iterative solution of the saddle-point systems obtained by combining standard finite element discretizations with two distinct types of stochastic basis functions. So-called mean-based preconditioners, based on fast solvers for scalar diffusion problems, are introduced for use ...
متن کاملLow Rank Solution of Unsteady Diffusion Equations with Stochastic Coefficients
We study the solution of linear systems resulting from the discreitization of unsteady diffusion equations with stochastic coefficients. In particular, we focus on those linear systems that are obtained using the so-called stochastic Galerkin finite element method (SGFEM). These linear systems are usually very large with Kronecker product structure and, thus, solving them can be both timeand co...
متن کاملOn the generic parallelisation of iterative solvers for the finite element method
The numerical solution of partial differential equations frequently requires solving large and sparse linear systems. When using the Finite Element Method these systems exhibit a natural block structure that is exploited for efficiency in the “Iterative Solver Template Library” (ISTL). Based on existing sequential preconditioned iterative solvers we present an abstract parallelisation approach ...
متن کاملHierarchical Fem : Strengthened Cbs Inequalities , Error Estimates and Iterative Solvers ∗
This paper describes natural decomposition of hierarchical finite element spaces, discusses a characterization of this decomposition via strengthened CBS inequality and uses this decomposition for development of hierarchical error estimates and iterative solution methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 32 شماره
صفحات -
تاریخ انتشار 2010